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Introduction
HIV incidence, the rate of new infections in the population, is an important measure of the success of public
health strategies for the HIV/AIDS epidemic. HIV incidence is difficult to estimate because people infected with
HIV may remain asymptomatic and undetected for as long as eight years. The rate of new HIV positive tests is
not necessarily a good measure of incidence.

We present a mathematical modelling approach to estimate incidence using existing public health data and data
from genotypic drug resistance tests, that are a recommended component of the patient treatment protocol [2].
We develop two separate and independent models for the diagnosed fraction of the HIV positive subpopulation
and use numerical optimisation methods to find the values of the parameters for which the two models most
closely agree. Subsequently, we calculate HIV incidence from our estimate of the time series for the fraction of
the HIV positive diagnosed population.

Models
a) Transmission Model

The transmission model is based on the principle that new HIV infections in a population occur either through
transmission from another HIV positive individual in the population or through immigration of HIV-positive
individuals into the population. Diagnosed and undiagnosed segments of the infected population are treated sep-
arately. Surveillance data is used to calibrate model by matching them to the known properties of the diagnosed
population. The remaining model parameters, linking the diagnosed and undiagnosed people in the infected
population are estimated from the other sources of data, either from surveillance studies or from literature. The
time rate of change of the number in HIV positive individuals N is given by the differential equation
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The differential equation (1) can be rewritten to give the Bernoulli differential equation
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Parameters used in the model

αT : Proportion of the population that is diagnosed
e : Number of new HIV infections generated by each undiagnosed HIV-positive individual per unit time
pb : Factor by which the undiagnosed transmission rate is reduced due to behaviour change after diagnosis
Fu : Net immigration for undiagnosed individuals

1− ph : Proportion of diagnosed individuals on HAART
d : Deaths due to all causes for individuals with undiagnosed HIV infection
D : Deaths due to all causes for individuals with diagnosed HIV infection
Fd : Net immigration for diagnosed individual
H : Number of diagnosed on HAART

Heff : Proportion on HAART that are virally suppressed
M : Number of people known to be living with HIV
R : Rate of new positive HIV diagnoses

All quantities except αT , e, pb and Fu are obtained from the surveillance data. The form of equation (2) means
that value of αT as a parameter is only needed for one anchor year as long as the other parameters are known.
Nonetheless, this leaves us three unknown parameters (αT , e and pb) to be calibrated from the sources other than
the surveillance data - under the assumption that the baseline infectivity of undiagnosed individuals within the
modelled population (e) is constant and net immigration for undiagnosed individuals (Fu) is zero over the period
under consideration. We assume that individuals who die of AIDS-related causes are diagnosed before death.
Therefore, the death rate d of individuals with undiagnosed HIV infection is equal to the all-cause death rate in
the general population.

For any given choice of e, pb, and initial value α0 = αT (t0), we can solve the differential equation (2) numerically
using Eulers method to obtain a monthly time series estimate α1(t; e, pb, α0). The initial time t0 is an arbitrary
time in the interval covered by the data.

Models
b) Genetic Model

Alternative approach relies on the HIV virus genetic data collected by BCCfE. The basic idea underlying this
approach is to compare the difference of the genetic sequence of the HIV virus in every newly diagnosed case
with the database of sequences of the viruses in already diagnosed patients. We define the population genetic
distance for each individual receiving a genotypic drug resistance test by first calculating, at time t, the minimum
viral genetic distance to all individuals tested prior to time t. The population-level genetic distance time series
r(t) is calculated by averaging this result over all individuals tested at time t. Viral genetic distance is computed
using the Tamura-Nei model of pairwise genetic distance [4].

We view the diagnosed fraction αG as a function of the population genetic distance r(t). The population genetic
distance r(t) being close to 0 means that for any tested individual, the viral sequence from the individual who
infected them is highly likely to be in the tested database. This implies that αG is close to 1. Furthermore, the
derivative of αG with respect to r(t) should be zero at r = 0. If r(t) is large, it is unlikely that the tested database
contains many viral sequences from individuals that infected other indiviuduals in the database. In this case, αG
approaches 0 as r becomes large. The general shape of the dependence of αG on r shown below.

Functional form of the relationship between fraction diagnosed and population genetic distance

If we make the assumption that the function relating r(t) and αG is uniform and smooth, we are left with a two-
parameter family of functions satisfying the limiting conditions above. This two-parameter family of functions
is described by the equation:

αG(r) = e−crk (3)

where c > 0 and k > 1 are constants.

Combined Approach

The structure of the combined approach

Results
The Continuous Tabu Search method [1] is used to find the values of e, pb, α0, c and k which minimise the sum
of the weighted squared differences
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dαG
|α=αG(t;c,k)(αT (t; e, pb, α0)− αG(t; c, k))

2 (4)

The values for e, pb and α0 are substituted back into αT to obtain an estimate of the time series α, the fraction
of the HIV positive population that is diagnosed. This estimate is biased towards predicting a small error in
the estimate of α(t) for values of t near t0. However this error is inconsequential to the model because t0 is
an arbitrary time. Therefore, we conduct a Monte Carlo simulation by repeating the optimisation procedure for
randomly chosen t0 in the time interval 2000 to 2009. The results of this Monte Carlo simulation are used to
determine confidence intervals for αT (t) and αG(t).

Results
A Monte Carlo simulation with 200 iterations is used to calculate the 90% confidence interval.
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An estimate of the HIV incidence time series is obtained from the times series for α using the equation
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Number of New HIV Infections and New Diagnoses in British Columbia from 2000 to 2009

Conclusions
We have developed a new method for estimating HIV incidence from routinely collected public health data
combined with genotypic resistance test data. We produce estimates for (i) the proprotion of diagnosed HIV
infections, (ii) HIV incidence and (iii) HIV prevalence by developing two independent models based on two
independent data sets from the same population, . The model also generates estimates for number of new HIV
infections generated by each undiagnosed HIV positive individual per unit time (e) and factor by which the
undiagnosed transmission rate is reduced due to behavioural changes after diagnosis (pb).

HIV incidence estimates provide public health officials, HIV clinicians, and healthcare policy makers with the
ability to monitor and evaluate the effectiveness of programmes to control the HIV epidemic. A particular
advantage of this method is that it utilises existing data and avoids the need for costly cohort studies.
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