Modelling Workshop - Disease and Testing
NepidemiX

March 30, 2014

| .
I process.imi
[-

77777777

1 Logging in and preparing the computer

1.1 Create a working directory

Create a new folder on the nepidemix drive. Name it after yourself. You will
be working in this directory.

1.2 Copy tutorial data files to your working directory
Before we can start the tutorial you will need to copy some simulation data to
your working folder. This can be found in the folder tutorial files.

Select the files uniform_simulation.ini and motivated_simulation.ini as
well as the folder network and copy them all to your working folder.

The .ini files are the NepidemiX simulation configuration files (you will have
a closer look at them later). The network directory contains the seed network
for the simulations.

You can skip copying the other two directories (scripts contains a script we will
be using later, but it is already in the path; solution actually contains finished
and documented versions of the process files you will be building. Good to
know, go there for a peek if things seem hopeless - beats banging your head to
the keyboard).

1.3 About the software we’ll be using

NepidemiX is still in an infant stage as software goes; to keep its complexity at
a minimum it is currently a command line only software, configured using text
files.

Therefore you will need to use a text editor to write the process files, and the
terminal to run the software. The resulting data files can be loaded into a
spreadsheet application such as Excel.

1.3.1 The terminal

Don’t worry if you are not familiar with running programs from the terminal.
These instructions point out what you have to do, explaining each step. You
will only have to do three things 1) Change directory to your working directory;
2) execute the nepidemix command; 3) execute a script that extracts incidence
data.

Let’s do step 1) already now! The terminal that popped up when you launched
the tutorial has its current directory set to the nepidemix drive. We will need
to change it to your tutorial working directory (the one you created above).

The command used to change directory is cd.

So, type cd followed by a space, and the name of your working directory. To
make things easier, a nice trick is to simply drag and drop your working folder
onto the terminal (after you wrote cd and space). This will fill in the full path.
Then press enter/return, and you should have changed directory.

To check this you can type 1s followed by enter/return. This is the list command
and will give you a list of files and folders. You should see the names of the files
you copied earlier.

If this is not the case, or the cd command gave you any error message, let us
know, and we will come to help you out!

=W N =

2 Writing the first testing process: uniform test-
ing

Now you are ready to write your first process, and we will start off with the
uniform testing. You will write the process description in your editor so you
should start it up.

In essence the process description will encode the state space and the transitions
laid out in Figure 1. Together with the NepidemiX simulation configuration file
it makes up the input we will be using.

The simulation configuration file is provided (you copied it earlier) and you
should be able to leave it as it is. However if you to have a better understanding
of its role it is quite good to have a look inside it. Which is what we will do
next.

2.1 Inspect uniform simulation.ini using an editor

This is one of the files you copied to your working directory. Go ahead and open
it up.

Don’t change any values, just have a look in it. It looks very similar to when
you were shown in the lecture, but with comments explaining every option.

There are section headings written in square brackets: [Simulation],
[NetworkParameters], [ProcessParameters], and [Output]. In each of the
sections there are option names and values on the form option = value.

Starting with the [Simulation] section at the top of the file, most of the settings
there are related to how to initialize the network (network func, node_init,
edge_init) and in which mode NepidemiX should run (process_class).

The settings iterations and dt are of interest however. The first one tells how
many times NepidemiX should go over all nodes and perform the process rules.
The second states the unit time difference between each iteration. (That is this
particular simulation will run for 2000 x 0.01 time units [years].)

Next, [NetworkParameters] section only contains the file name to the prepared
network. In another type of simulation we may have generated a network at the
beginning, and this section would have had many more options related to that
process. But not now.

Move on and have a closer look at the values in the [ProcessParameters]
section (reprinted here):

[ProcessParameters]

Path and file name to process specification.

If you have named your file something else than
random _process.ini, change it here.

10
11
12
13
14
15
16
17
18

file = uniform_process.ini

These are the process parameters as named in
the tutorial description, and used in the

process description file.

If you have used another name change the

corresponding parameter name here.

beta = 6.0
lambda_-A = 0.64
lambda_-C = 0.01
tau_r = 0.
delta A =
delta.C =
delta_T

|
0o o

This is where your process related settings are stored. The values of any pa-
rameters used in your process description must be defined here. Thus, if you
for some reason use other names for your parameters later than the ones used
here you will need to change the names in this section.

Moreover, the option file = uniform_process.ini gives the expected name
of your process file. If you name it anything else than uniform process.ini
you must change this value.

However, if you follow the instructions and recommended naming below you
should not have to change anything.

Finally, the [Output] section lists many options related to how data should
be saved. Types, and how often sampling should be made. One setting worth
attention here is base name. Its value (uniform testing) will be prefixed to all
the data files generated by the simulation. If in addition unique is also set to
yes a time stamp will be added as well (as it is now, each new simulation will
overwrite the previous one).

That concludes your brief tour of the configuration file, let us know if you have
any questions.

Now, close down the file without saving any changes you may have made while
poking around.

2.2 Create a new file called uniform process.ini

In your editor select new file and make sure it is saved in your working directory.

You are now ready to write the process file. It will have three sections:
[NodeAttributes], [NodeRules], and [MeanFieldStates]. The first specifies
the state space, the second state transitions, and the third, while not strictly
needed for our purposes is a format requirement.

2.2.1 Write the [NodeAttributes] section

Start by putting in the header [NodeAttributes] in top of your new file. Note
that NepidemiX input files are case sensitive.

Each line in this section specifies a node attribute and its possible values. As
you remember from the problem description we have three node states: disease,
treatment, and motivation'. Each with its own set of possible values.

With the possible values of disease being S, A, and C this attribute is declared
as disease = S, A, Cin the file. Go ahead and write that row now.

For treatment the possible symbols are U or T yielding treatment = U,T, and
for motivation N, or Y, which of course is declared using motivation = N, Y.

Your [NodeAttributes] section should now look like:

[NodeAttributes]
disease = S, A, C
treatment = U, T

motivation = N, Y

This in effect defines a three dimensional grid with twelve points, each denoting
a unique state. In the next section we will show how to write the transition
rules between those states, or between sets of states.

Note by the way that attribute values does not have to be single letters, any
word will do. In this tutorial you should use the specified ones however.

2.2.2 Write the [NodeRules] section
Now it is time to specify the rules governing how nodes in a specific state (or
set of states) move into another state. That is to specify the actual process.

The heading for this section is [NodeRules] so please go ahead and put that
on a new line in the file.

As you will remember from the lecture there are two processes: a disease process,
a treatment process. We also have to take death (resetting to a ground state)
into account.

All transitions are mapped out in Figure 1.

1You may now be wondering why motivation is part of the attributes for nodes in the
uniform testing model, where it does not play any role. The answer is that as we use the same
prepared network (in order to be able to compare the methods) motivation will be present
there and so needs to be declared and used here. However, as you will see the value of this
attribute is never used in this testing model and not active.

Figure 1: Uniform testing model transitions. Disease attribute values: S, A, C;
Testing attribute values: U, T.

We will jump in at the deep end and write the rule of infection. This is the edge
in Fig. 1 between S/U and A /U, having the transition probability Aana+Acnc.

Encoded as a process rule in NepidemiX it looks like this

{disease : S} —> {disease : A} = lambda_A x NN({disease : A,
treatment : U}) + lambda_-C % NN({disease : C, treatment

U})

Let’s break it down; you can go ahead and put it in the file while we do so:

The first part, {disease : S} declares the rule to be valid for all nodes with the
disease attribute set to S, irrespectively of what their other attributes are set
to. Following it is the symbol —> (’minus’ ’greater than’), an arrow pointing
to the attribute updates that should be made through this rule. In this case it
is {disease : A} meaning that disease is changed to A through this rule (again,
all other attributes are left untouched).

Next is an equal sign, =, and on the right hand side is an expression for the
probability in unit time of the rule to be carried out.

In our case this is lambda_A x NN({disease : A, treatment :U})+ lambda_C * NN({
disease : C, treatment : U}) and corresponds directly to the expression Agna +
Acnc that we saw during the lecture. Here NN is a special function giving the
number of neighbours with a certain set of attributes set. Thus NN({disease :
A, treatment :U}) will give the number of neighbours with disease set to A and
treatment set to U.

11

13

That is it. Please double check that you have a line in your file corresponding
to the above (and only one line, NepidemiX does not allow line breaks in rules,
even though they are printed so here to fit on a page).

That was actually the hard part. Once you have grasped the format of this rule,
the remaining will be easy, as they are close variations on a theme.

The full [NodeRules] section encoding all relevant rules looks like this:

[NodeRules]

{disease : S} —> {disease : A} = lambda_A x NN({disease : A,
treatment : U}) + lambda_C x NN({disease : C, treatment

U})
{disease : (A,C), treatment : U} —> {treatment : T} = tau_r
{disease : A} —> {disease : C} = beta
{treatment : T} —> {disease : S, treatment : U} = delta.T

{disease : C, treatment : U} —> {disease : S, treatment : U} =
delta_C

{disease : (S,A), treatment : U} —> {disease : S, treatment
U} = delta_A

It is uncommented here (for brevity), but feel free to add comments to your own
file to remind yourself of what the rules are for. A comment line starts with the
symbol #.

As you can see there are five additional rules, and we will deal with them in
order written. The first one, on line 3 is the infection rule described above. Then
follows the testing rule (line 5). It selects untreated nodes in either the acute
or chronic disease stage and moves them from untreated to treated. Uniform
testing means there is a constant probability of getting tested, tau_r. We make
no distinction between those in the acute and chronic stages with respect to
testing, so this rule can be combined for both corresponding edges in Fig. 1. It
is done by {disease : (A,C), treatment : U} selecting nodes with disease attribute
set to either A or C' and treatment attribute set to U. Note also that the state
update for this rule, {treatment : T}, only updates treatment but leaves the
disease attribute unmodified.

Line 7 then encodes the disease progression from acute to chronic stage. This
is again with constant probability in unit time, beta. This rule is possibly the
simplest kind; valid for nodes with disease set to A, and changing that same
attribute to C. Such a rule matches a set of states, as it is valid no matter what
the other two attributes are set to.

The remaining three rules are death rules. Which, in this case of a static network

simply means that the node state is reset to a healthy, untreated ground state.
That is disease is set to S, and treatment to U.

The first of these rules, on line 9, is for treated individuals. Figure 1 states that
treated nodes have a death rate of dr no matter what disease state they are
in. This is also what the rule on line 9 encodes. It matches all treated nodes
no matter what values their other attributes happens to have, and changes all
attributes to the ground state with probability rate delta.T (in unit time).

Next up are the untreated and chronically infected that are put in the ground
state with probability delta_C.

Finally, the last rule captures those either susceptible, or acutely infected and
untreated, putting them back in the ground state with probability delta_ A.
This last rule does in fact encode a couple of subtle issues that you should note.
First, it encodes an assumption that susceptible and acutely infected have the
same probability to die. This is not unreasonable, but is through this rule
encoded. There are other ways of doing this, in fact people on treatment have
the same probability to die in unit time as susceptible and acutely infected.
This is because delta T = delta A in the simulation configuration file. (Look
back in the [ProcessParameters] section in uniform_simulation.ini to verify.)
However, the assumptions are very differently encoded. In the second case it is
a simple matter of setting two parameters equal. In the former the behaviour
of the process is encoded to be the same for both. There is no actual reason for
making the distinction here, other than to point it out to you.

Secondly, you may notice that the state disease = S and treatment = U is
both source and target for some nodes selected by this rule. That is: it is
a self map. There is no real reason for including the selection of this subset
in the rule, as they will be reset to the same state. This is true, and in fact
the simpler rule {disease : A, treatment : U} —> {disease : S, treatment : U} =
delta_A would have resulted in the same behaviour for this simulation.

However, in general when there are further attributes spanning the state space
(such as motivation in the next testing model) involved it is good to have a
catch-all case such as this. The reason being that some attributes may not have
any influence on the event of death, but should still be reset, and it is otherwise
easy to create forgotten 'pockets’ of these in state space.

Now, after this lengthy explanation you will have done the bulk of the work.
If you have the above lines filled out in your file, and understand what they
represent the rest of the tutorial, will be a breeze.

2.3 Write the [MeanFieldStates] section

The final section in any process definition is called [MeanFieldStates]. Here all
tracked states are declared. This currently serves two purposes in NepidemiX:
First, it allows the fraction of the total population in the declared states to be

=W N =

[«

11

13
14

15

17
18

used in probability rules (similar to the function NN that gives the nearest neigh-
bours) which is something we do not do in this tutorial. Secondly, all tracked
state will be saved in the output files defined in the simulation configuration.
For this tutorial we will simply tell NepidemiX to track the total number of
nodes in all states, as well as the number of nodes in all other possible (fully
specified) state-sets. This is done by simply declaring {} which will match every
possible state.

So, make sure your section says:

[MeanFieldStates]

{

That is everything. To recapitulate, here is the whole process description in one
go:

[NodeAttributes]

disease = S, A, C
treatment = U, T
motivation = N,Y

[NodeRules]
{disease : S} —> {disease : A} = lambda_A % NN({disease : A,
treatment : U}) + lambda_C % NN({disease : C, treatment

U})
{disease : (A,C), treatment : U} —> {treatment : T} = tau_r
{disease : A} —> {disease : C} = beta

{treatment : T} —> {disease : S, treatment : U} = delta.T

{disease : C, treatment : U} —> {disease : S, treatment : U} =
delta_C

{disease : (S,A), treatment : U} —> {disease : S, treatment
U} = delta_A

[MeanFieldStates]

{}

2.4 Double check that you have saved the file

Do it! (The name should be uniform process.ini, and the location your
working directory.)

You are now ready to run your first simulation!

3 Run the uniform testing simulation

In your working directory, there should now be a file called uniform_simulation.ini
that you copied previously, and another one called uniform process.ini that
you just created. (There are other files as well, but let’s ignore them for now.)
You are ready to execute the simulation with NepidemiX.

To do so go to the terminal window and type the following

nepidemix_runsimulation uniform_simulation.ini

Then hit enter/return. If you have typed everything correctly nepidemix will
run (again, a handy tip: pressing the tab key when typing a command or file
name in the terminal will auto-complete it as far as possible), if not the terminal
or nepidemix will complain. If so try to find the error, or give a shout and we
will come running to help you.

Once the program executes NepidemiX will take the simulation file and create
(in this case load) a network structure, set up output structures, and load val-
ues for the parameters specified. It will also load the file uniform process.ini
and create a set of rules from it. (How does it know what process file to
load, that is specified in the simulation file, remember the file setting in the
[ProcessParameters] section we saw earlier?)

Then NepidemiX starts the simulation, which basically means that it goes
through the specified number of iterations, each time changing node states ac-
cording to the process rules you just specified.

If there is an error in the process description NepidemiX will complain. In some
cases it does so politely, in other cases it shows its Beta status and simply dumps
a lot of unfriendly information. In either case, you are back at the command
prompt, and we are here to help. Wave your hands.

Most likely however your file will work, and all NepidemiX will be chugging along
happily. You know this because it will print a whole lot of (still not very helpful)
information. The printouts won’t have much meaning for us now, but the last
thing NepidemiX prints before starting to run the process on the network is a
line ending in Process will leave topology constant?: True. If you see
this, you will know that NepidemiX has reached as far as launching some kind of
simulation. You will also not be shown a new command prompt again (until the
simulation is finished of course). One last thing: keep an eye on NepidemiX the
first 20 seconds or so, if the simulation finishes that quickly there’s something
wrong that was not detected by the parser?. If this happens while you do the
tutorial it most likely means that your file name does not match the one given
in the file option in the uniform_simulation.ini file. Double check that you
use the file name suggested above, or change the value of the option to match
whatever file name you are using.

2Known issue, beta status, we do apologize.

10

NepidemiX is now running 2000 iterations on a network of 10000 nodes and save
a bit of data3. This will take ten minutes or so. (More if you keep facetweeting
so hands off that browser!)

Now is an Excellent time to go for a walk or have that coffee you've been
dreaming of the last hour. See you in a while!

4 QOutput and Analysis

Welcome back!

Before we go on to writing and running the motivated testing simulation we’ll
look at the data, and how to load it into Excel.

4.1 Look in your working directory

Hopefully everything worked out and your simulation is finished. You should

now have two new files in your working directory: uniform testing state_count.csv
and uniform testing nodeTrans.csv. These are two files created by Nepi-
demiX. Both are in comma separated value (csv) format. This is a simple text
format that is easily imported into other programs such as Excel.

We will not be using either of the files listed directly (but rather run a second
script extracting incidence information); for the interested, an overview of the
files follows. If you’d rather get on with the tutorial you can easily skip to the
next section.

The file uniform testing state_count.csv contains the number of nodes in
each state (combinations of attribute values) for every time step. This data can
for instance be used to plot prevalence over time.

We will not be doing that in this tutorial as the number of iterations are too
few to give a reliable indication in prevalence. However if you like you can start
up Excel and take a look at the file. The first row contains header information.
This is a quite technical format, but you will see that the names and letters we
use as attribute values are present, indicating which attribute values make up
the state (or set of states) counted in each column.

The file uniform testing nodeTrans.csv is somewhat more complicated. It
contains a list of the number of nodes changing from one state (rows) to another
(columns) in a given time step (first column). Imported into Excel this yields a
quite large matrix.

3What determines these values? Well, the 2000 iterations is controlled by the iterations
setting in the files uniform_simulation.ini, the network size is given by the network, and as
we have prepped it for this tutorial, you will have to trust us there.

11

Selecting the right combination of rows and columns in this matrix would allow
you to compute the incidence, however this is a quite laborious procedure, so
you will simply run a script that destiles that information into a new csv file
instead (then you will work on that information).

4.2 Run the command extract_incidence.py

In your terminal window, type and run (press enter/return) the command

extract_incidence .py

This is a small script we have provided for this workshop. It will go through all
files ending in nodeTrans.csv and for every time step in the simulation extract
the number of nodes that has changed disease state from susceptible (S) to
acute (A). That is the incidence per time step (in this case 3.65 days as our dt
is set to 0.01 years).

Once you have run it you will see a new file in your working directory called
uniform testing incidence.csv. This file contains a very simple table; the
first column is a point in time (in years), and the second column is the number
of new cases of HIV happening during the corresponding simulation step.

4.3 Import uniform testing incidence.csv in Excel

You should now import (or load) the csv file into Excel. If you have the program
open already, you can use the menu option Data - Get Ezxternal Data - Import
Text File.

Navigate to your working directory and select uniform testing incidence.csv.

In the dialog that pops up: Make sure Delimited is selected and click 'Next’,
then choose ’Comma’ as delimiter and click Finish.

4.4 Plot the data

Select the columns and use a scatter plot to view the data. You can do this by
moving to ’Charts’ and selecting Scatter plot - Smooth Lined Scatter.

This will show a very noisy dataset. This is the incidence per iteration for the
simulation you just ran.

4.5 Investigate the data using a moving average

We'll be using a moving average to look at the data trend. This computes a
trend curve by averaging the data points in a window around every point.

12

Chart 2 106 (= &
A B € [D TJe[F T & [®w [1 T —§ T % [€ T ™ [N T

Seriesl

——100 per. Mov. Avg, [Series1) [

D e e
[=]
i
v

Figure 2: Excel plot of uniform testing incidence data.

The quickest way of adding a trend line to your plot is by right-clicking on the
series plot and selecting ’Add Trendline’. You can try out linear and polynomial
regression if you like. In the end choose a moving average and a period of at
least 100.

The result should look similar - but not exactly like (stochastic, remember?) -
to the screen shot shown in Figure 2.

We will now move on to implementing a motivated testing process, running it,
and then you will plot that one as well.

5 Writing the second testing process: motivated
testing

Now it is time to implement the motivated testing process. The whole thing is
depicted in Figure 3. As you can see it is in essence only two different versions
of the uniform testing that we just implemented, plus the motivation process
causing the boost in testing rate.

As you already have the experience from writing one process we will get right
on it here.

13

any

Figure 3: Motivated testing model. Transition probabilities same as those used
in Fig. 1 left out for clarity, as are death transitions. Disease attribute values:
S, A, C; Testing attribute values: U, T; Motivation attribute values: N,Y.

14

=W N =

(=)

10

12

13

15

17

18

19

21
22

5.1 Open a new file called motivated process.ini

Do it in yoru editor, and do not overwrite or reuse the uniform testing process.
That way lies madness, or at least mild frustration.

5.2 Write the motivated testing process

Below is the full motivated testing process in one go. Read it through compare
to Figure 3. After this we’ll go through some of the rules. You can type it in
as you go, or wait until the end of the section if you prefer.

[NodeAttributes]

disease = S, A, C
treatment = U, T
motivation = N, Y

[NodeRules]
{disease : S} —> {disease : A} = lambda_A % NN({disease : A,
treatment : U}) + lambda_C % NN({disease : C, treatment

U})

{disease : (A,C), treatment : U, motivation : N} —> {treatment

: T} = tau.m
{disease : (A,C), treatment : U, motivation : Y} —> {treatment
: T} = tau.m * sigma

{motivation : N} —> {motivation : Y} = alpha % NN({motivation

Y}

{motivation :Y} —> {motivation : N} = phi
{disease : A} —> {disease : C} = beta

{treatment : T} —> {disease : S, treatment : U, motivation : N
} = delta_T

{disease : C, treatment : U} —> {disease : S, treatment : U,
motivation : N} = delta_C

{disease : (S,A), treatment : U} —> {disease : S, treatment
U, motivation : N} = delta_A

[MeanFieldStates]
{}

Now then, looking at the process description you will probably recognize most
of it: The [NodeAttributes] and [MeanFieldStates] sections are identical to
the ones used in the uniform testing process, and so is the infection rule (line
7) and the disease progression (line 15).

15

You will probably also recognize the rules for 'death’ (lines 17-19) where a
node is recycled by having its state set to the ’ground state’. The difference
here is that the motivation attribute must be part of the ground state as well
(N) as the attribute values has an impact on process behaviour this time. It
reflects that motivation is lost when a node ’dies’, and so a new node must start
unmotivated.

Note also that motivation does not influence the probability for a node to die.*

As for new rules, note that the testing has changed. We now have two testing
rules (lines 9-10). On the selection side of the rule (left of —>) we now select
also based on the motivation attribute, choosing the first probability (taum) if
the node is unmotivated, and the second (tau-m * sigma) if it is motivated.

There are also the motivation spread rules on lines 12-13. The first one se-
lecting unmotivated nodes (motivation attribute set to N) and making them
motivated (V). This is a linear function alpha * NN({motivation : Y}) where NN
as before gives the number of neighbouring nodes with the submitted attribute
combinations. Thus the probability of a node becoming motivated increases
with the value of the parameter alpha in unit time for each currently motivated
neighbour (nagging).

The second motivation rule (line 13) changes back to unmotivated, and is a
constant probability rate in unit time. It simply means that nodes stop be-
ing motivated after some time (but may become motivated again due to their
neighbours of course).

That is it for the motivation process. If you haven’t done so already. Type it
in. Save it as motivated_process.ini.

5.3 Run the motivation simulation

Now it is time to run the motivated simulation. If you like, you can open up
the configuration file (motivated_simulation.ini) for a look. It will look very
much alike to the one for the uniform simulation, but the [ProcessParameters]
section will look different, also defining the new parameters alpha, phi, taum,
and sigma. Note also that the name of the process file has changed to
motivated_process.ini.

[ProcessParameters |
file = motivated_process.ini

4In light of this it also makes sense why the last of the death rules (line 19) includes
susceptibles (S5). If you remember we mentioned this in the context of the uniform testing
process. There it would not have mattered, however here it does: If susceptibles are allowed
to live on because we assume that they were already in the ground disease and testing stages,
it would have meant that some nodes could be spreading the social motivation longer than a
life time. This would have been quite unlikely, given the parameter values used. Yet it would
have given the motivation spread a small advantage in the simulation.

16

0~ O Uk

11
12
13

beta = 6
lambda_A = 0.64
lambda_C = 0.016

tau-m = 0.02
sigma = 25.0
alpha = 0.1

phi = 0.6
delta_A = 0.018

delta_.C = 0.1
delta_T = delta_A

Another change, not shown in the above listing is that the base_name setting
in the [Output] section now is motivated_testing. This will cause the files
generated during this simulation to be begin with this name.

In any case, there is nothing that needs to be changed, and you can go ahead
to run the simulation using the command

nepidemix_runsimulation motivated_simulation.ini

As in the uniform testing case the program nepidemix runsimulation loads
the configuration file, the network, and your newly written process and runs
the simulation. The same things apply as with the last simulation you ran, so
please review that section if you need to.

5.4 Run extract_incidence.py again

After the simulation is finished you will find a new set of files with the results
from the simulation: motivated_testing nodeTrans.csv and
motivated_testing state_count.csv.

Same as with the uniform testing simulation you now need to create incidence
data by running the command

extract_incidence .py

in your terminal window.

After which you will also have the file motivated testing incidence.csv, as
before it contains the new infections for each time step in the simulation.

6 Compare incidence from the uniform and mo-
tivated simulations

Now it is time to compare the incidence data from the uniform and the motivated
testing strategies. To do so, import both data series in Excel and plot them

17

together (the same way you did in sections 4.3 — 4.5).

Looking at the moving average, are you confident to say anything about the
different testing approaches? The data is of course stochastic, but perhaps you
think you can see a trend there.

To put the numbers into context: remember that the y-axis will be the number
of new cases in a 3.65 day period, and the x-axis is time. Using a moving average
the smoothed curve is the number of daily new cases as averaged over some time
period (a year if using a window size of 100).

You should also try some of the other trend lines built into Excel if you are
curious.

Finally, in many studies incidence data is shown as a year by year total, and
not a curve. If you enjoy playing around in Excel you may want to produce one

of these diagrams®.

7 Averaging data

Now, to prove this trend, we should do repeated simulations (or you could
convince yourself by running around and checking the results from everyone
else in the lab).

However, we will try to be a little bit more scientifically minded and actually
create a data average. You won’t have time to run multiple simulations during
your tutorial, and so we will instead collect simulation data from the whole
group to create an average.

To do that however we will need to collect it from each and every one of you.
So, at this point call on one of the instructors to come over and copy your data
files.

Afterwards at the end of the day we will show and discuss the averaged data.

8 Now what?

You are finished. Well done! Go have a coffee or tea.

If you still want to play around with the model, changing parameters or even
the process, go ahead. You can also work through a more basic NepidemiX
tutorial, showing some other uses (including a less powerful, but simpler way
of writing state transition rules, and how to write processes in python). You
can find it here: http://nepidemix.irmacs.sfu.ca/tutorial.html . That

5However, for the type of data that we have here ("true’ incidence in regular fine-grained
intervals) it is of course better to compute a trend using a moving average.

18

tutorial also covers what you need to set up NepidemiX on your own computer
if you are interested in learning more.

For any comments or questions you are welcome to contact Lukas Ahrenberg at
ahrenberg@irmacs.sfu.ca.

See you at the discussion in a little while!

19

